

The Role of Synthetic Ropes in Optimal Mooring Design

Dr Sam Weller Tension Technology International & Mor Engineering Marine-I Mooring and Anchoring Solutions Webinar

5th November 2020

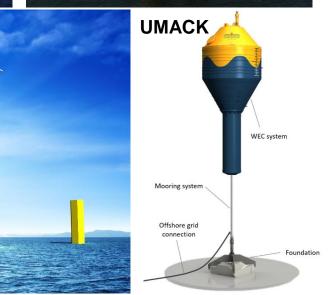
Tension Technology International Group

TTI was founded in 1986 and is headquartered in UK. It has two subsidiaries TTI Testing Ltd (Rope & Cable Testing Laboratory) and Scottish-based TTI Marine Renewables Ltd (Consultancy)

Core Disciplines & Expertise: Naval Architecture, Mechanical Engineering Hydrodynamics, Mooring System Design, Tank Testing, Rope & Electro-mechanical Cable Testing, Product Development (rope, anchors, mooring connectors, tensioning systems), Net manufacture, Mooring Software Development (OPTIMOOR), Marine Operations, Field Tests & Instrumentation.

tensiontech.com

Relevant Projects



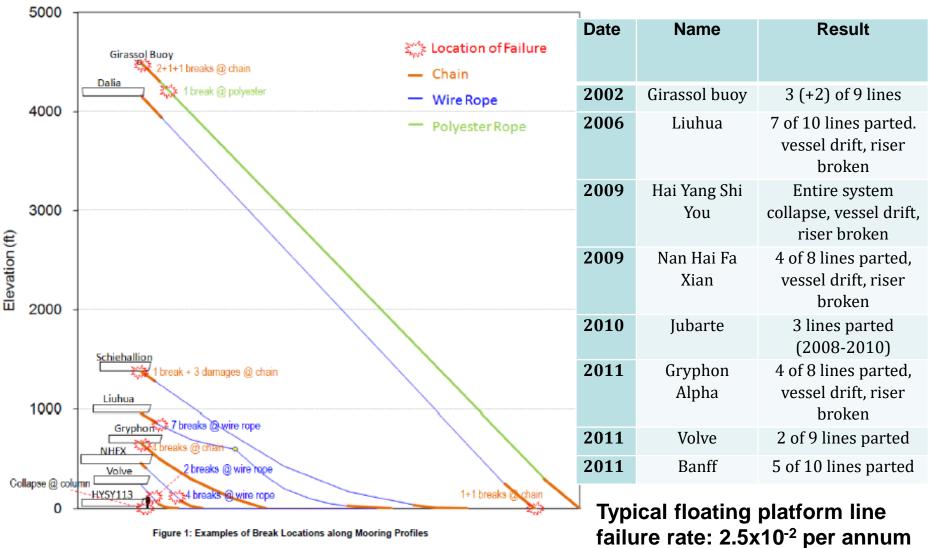
TIM (Towards an Industrialized single point Mooring system)

Marlin Star

Marine Renewable Commercialisation Fund 2014-2016

Extensive Offshore Use

Development of large-scale rope manufacturing, test facilities and certification guidance occurred in the 1980s with the demand for oil and gas exploration in ultra deep waters (>2000m).


Suitable for use in catenary, semi-taut and taut mooring systems either with and without chain, wire etc.

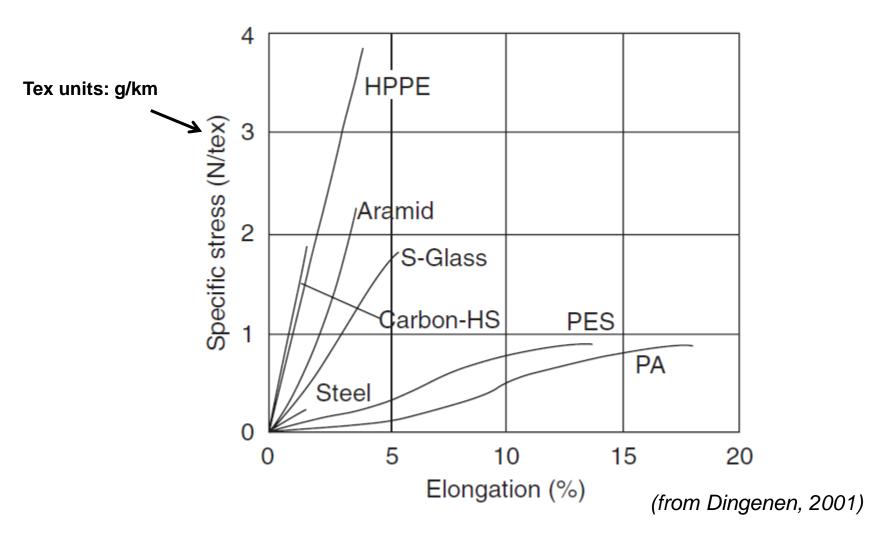
Permanent Mooring Failures

Drori, G. (2015)

(image from Ma, K-t et al. (2013) OTC 24025, Houston USA)

Steel vs. Synthetic

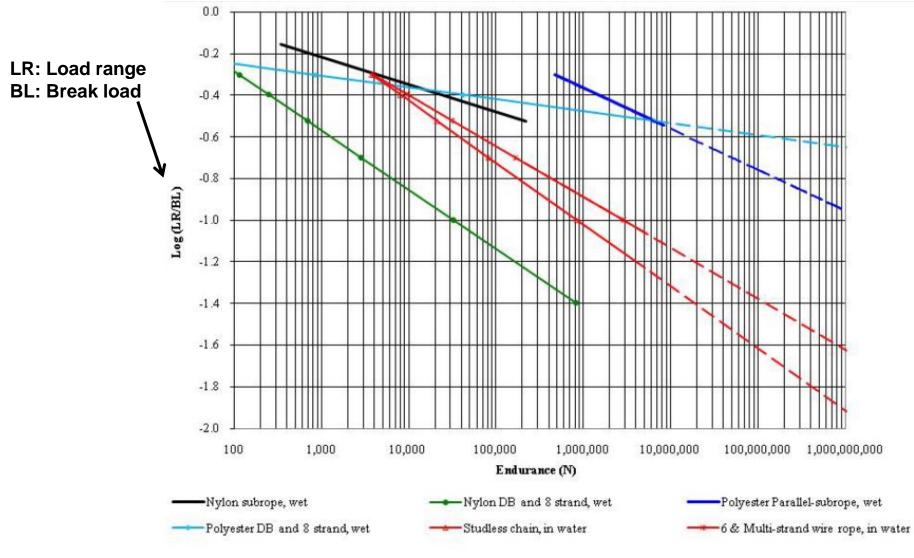
	Material	Density (g/cm ³)	Melting /charring point (°C)	Moisture (%) ⁽¹⁾	Modulus (N/tex, GPa)	Tenacity (mN/tex)	Strength (MPa)	Break extension (%)
	Steel	7.85	1600	0	20, 160	330	2600	2(4)
Synthetic	НМРЕ	0.97	150	0	100, 100	3500	3400	3.5
	Aramid	1.45	500	1-7	60, 90	2000	2900	3.5
	PET	1.38	258	<1	11, 15	820	1130	12
	PP	0.91	165	0	7, 6	620	560	20
	PA6 ⁽²⁾	1.14	218	5	7 ⁽³⁾ , 8 ⁽³⁾	840 ⁽⁶⁾	960	20
	Low de	ansity		Low mo	dulus	High str	ength Com	pliant


Low cost: Example: braid-on-braid polyester ~50% lower cost than studlink chain with the same break load (140kN).

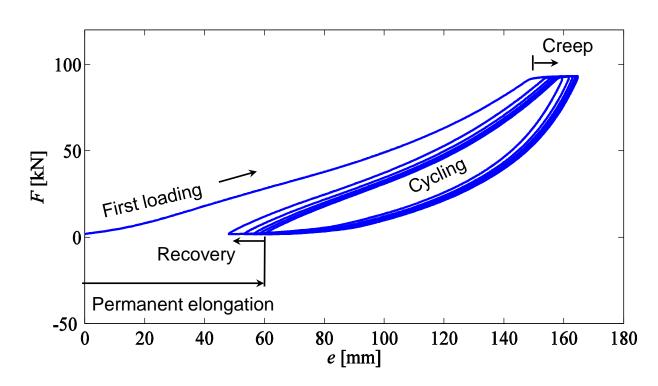
 $^{[1]}$ At 65% rh and 20 $^\circ\,$ C.

 $^{[2]}$ PA6.6 has a higher melting point (258 $^\circ\,$ C) than PA6.

^[3] The modulus and strength of nylon is approximately 15% lower when wet (McKenna et al.) ^[4] Yield point of steel. (values from McKenna et al. 2004)


Synthetic Fibre Properties

Fatigue Performance



(from Ridge et al. 2010)

Behaviour

Load-extension behaviour of a new nylon mooring rope sample subjected to 10 cycles of bedding-in (*Weller et al. 2014*)

Synthetic ropes display complex behaviour requiring specialist knowledge

TTI consultants have been involved in the development of international mooring standards, e.g. OCIMF, ABS, API, DNVGL and IEC and also published the Handbook of Fibre Rope Technology (Woodhead Publishing, 2004)

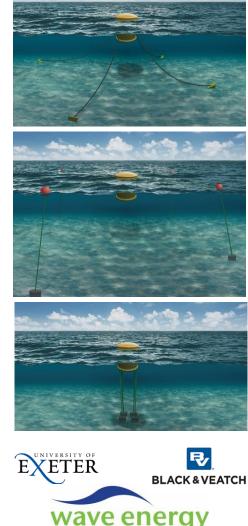
Qualification for ORE systems

Marine Renewables Commercialisation Fund (MRCF) 2014-2016

Testing, Qualification & Commercialisation of Synthetic Mooring System

Marine Energy: Supporting Array Technologies (MESAT) 2013-2016 Synthetic Fibre Rope Polymer Line Fairleads

Cost Reduction in Supporting Infrastructure Moorings & Foundations


TTI role: Project lead and author

This landscape study commissioned by Wave Energy Scotland, demonstrates that there are clear opportunities to make an impact on the cost of energy of wave power through further development and innovation in mooring components, foundations and associated subsystems.

- State-of-the-Art (Landscape)
- Voice of the Customer (VOC-Survey)
- Moorings & Foundations Innovation (TRIZ workshop)
- Mooring & Foundation Case Studies

Findings are relevant for WECs, TECs, FLOW, aquaculture etc.

Full report available to download here

SCOTLAND

TTI Ltd., University of Exeter and Black & Veatch Ltd (2018) Mooring and Foundation Landscaping, Wave Energy Scotland Knowledge Library

Weller SD, Banfield SJ, Canedo J. (2018) **Parameter Estimation for Synthetic Rope Models**, Proceedings of the 37th OMAE conference

Weller SD, Johanning L, Davies P and Banfield SJ (2015) **Synthetic mooring ropes for marine renewable energy applications**, *Renewable Energy*, 83, pp. 1268–1278.

Thanks!

Dr Sam Weller weller@tensiontech.com

